
13 570684 Ch09.qxd 3/31/04 2:51 PM Page 113

Chapter 9: How to C Numbers 113
� Signed variables can be maddening and the source of frustration as far

as creepy errors are concerned. It works like this: Suppose that you add
1 to a signed integer variable. If that variable already holds the value
32,767, its new value (after you add 1) is –32,768. Yes, even though
you add a number, the result is negative. In that instance, you should be
using an unsigned int variable type to avoid the problem.

� To use an unsigned variable and skirt around the negative-number issue,
you must declare your variables by using either the unsigned int or
unsigned long keyword. Your C compiler may have a secret switch
that allows you to always create programs by using unsigned variables;
refer to the online documentation to see what it is.

How to Make a Number Float

Two scoops of ice cream. . . .

Integer variables are the workhorses in your programs, handling most of the
numeric tasks. However, when you have to deal with fractions, numbers that
have a decimal part, or very large values, you need a different type of
numeric variable. That variable is the float.

The float keyword is used to set aside space for a variable designed to con­
tain a floating-point, or noninteger, value. Here’s the format:

float var;

The keyword float is followed by a space or a tab, and then comes the vari­
able name, var. The line ends in a semicolon.

Or, you can declare a float variable and give it a value, just as you can any
other variable in C:

float var=value;

In this format, the variable var is followed by an equal sign and then a value
to be assigned to it.

Float is short for floating point. That term somehow refers to the decimal point
in the number. For example, the following number is a floating-point value:

123.4567

An integer variable wouldn’t cut it for this number. It could be only 123 or 124.
When you have a decimal, you need a floating-point variable.

